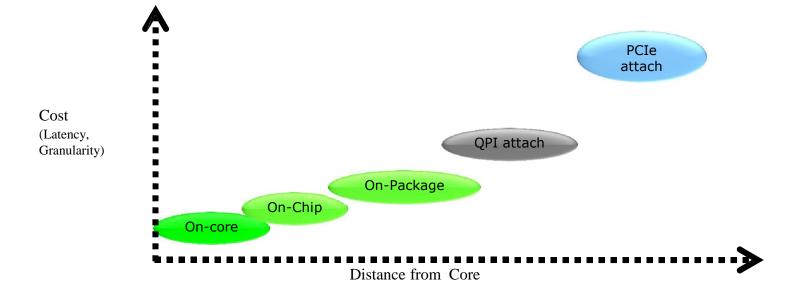

Pactron FPGA Accelerated Computing Solutions

Intel[®] Xeon + Altera FPGA

Motivation for Accelerators


- Enhanced Performance: Accelerators compliment CPU cores to meet market needs for performance of diverse workloads in the Data Center:
 - Enhance single thread performance with tightly coupled accelerators or compliment multi-core performance with loosely coupled accelerators via PCIe or QPI attach
- Move to Heterogeneous Computing: Moore's Law continues but demands radical changes in architecture and software.
 - Architectures will go beyond homogeneous parallelism, embrace heterogeneity, and exploit the bounty of transistors to incorporate application-customized hardware.

Accelerator Architecture

Performance Efficiency: Performance/Watt, Performance/\$ Programming Complexity : Effort, Cost

Accelerator Attach

Best attach technology might be application or even algorithm dependent

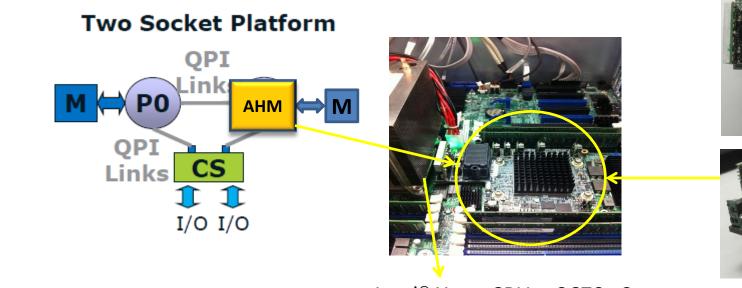
Coherency and Programming Model

. Data movement

- In-line
 - Accelerator processes data fully or partially from direct I/O
- Shared Virtual Memory :
 - Virtual addressing eliminates need for pinning memory buffers
 - Zero-copy data buffers
- Interaction between Core and Accelerator
 - Off-load
 - Hybrid : algorithm implemented on host and accelerator

Pactron FPGA Accelerated Computing Solutions

"Intel[®] Xeon + Altera FPGA" Software Development Platforms


Pactron's

Intel[®] Xeon + Altera FPGA SDP Platforms

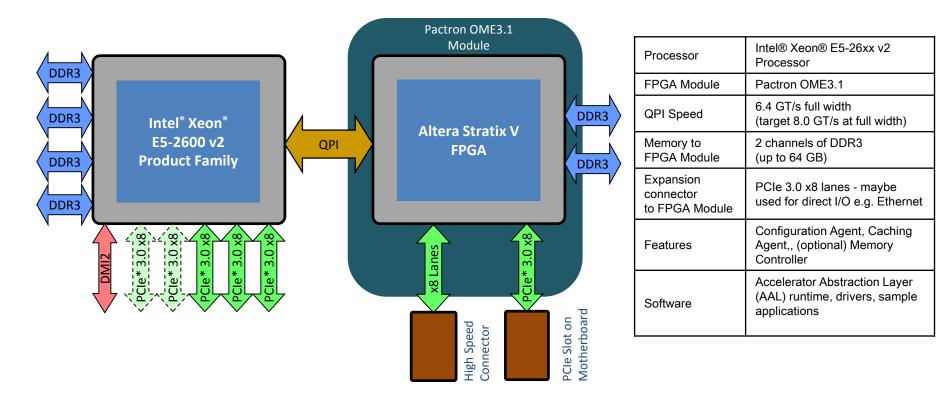
- FPGA with coherent low-latency interconnect:
 - Simplified programming model
 - Support for virtual addressing
 - Data Caching
 - Enables new classes of algorithms for acceleration with:
 - Full access to system memory
 - Support for efficient irregular data pattern access
 - Remapping of algorithms from off-load model to hybrid processing model
 - Fine grained interactions

Pactron's Intel[®] Xeon + Altera FPGA SDP Platforms

QPI Attached Accelerator Hardware Module ~ AHM

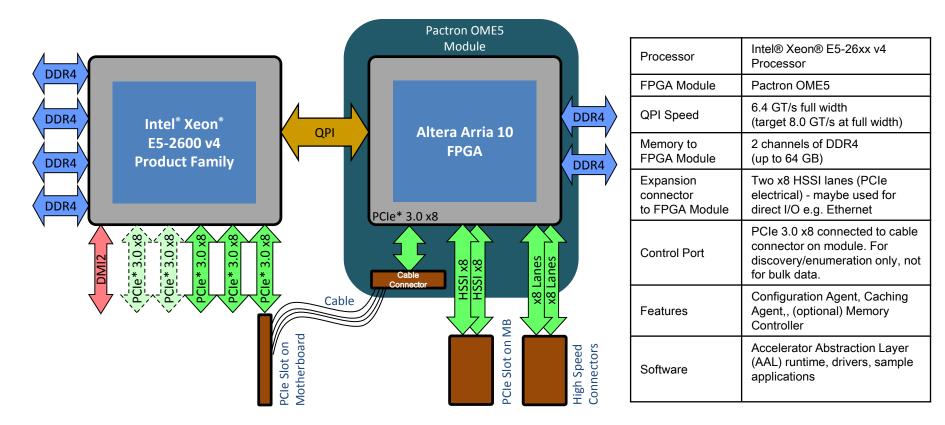
Intel[®] Xeon CPU e-2670 v2

AHM



Pactron Alter FPGA Modules

Pactron's Romley "IVY Bridge" SDP Platforms


Software Development for Accelerating Workloads using Xeon and coherently attached FPGA in-socket

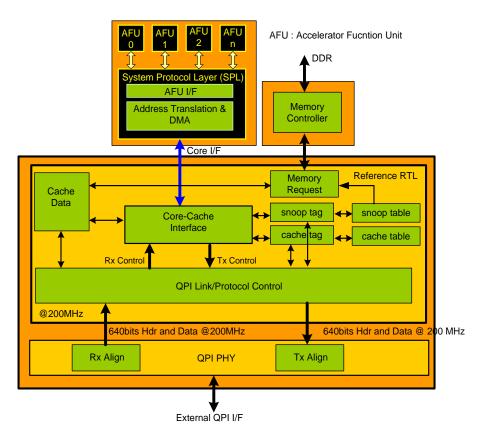
Released and Shipping today

Pactron's Grantley "HSX/BSX" SDP Platforms

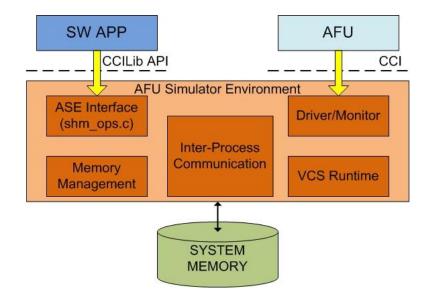
Software Development for Accelerating Workloads using Xeon and coherently attached FPGA in-socket

** Available Dec 2015 **

Pactron's Romley vs. Grantley Hardware differences

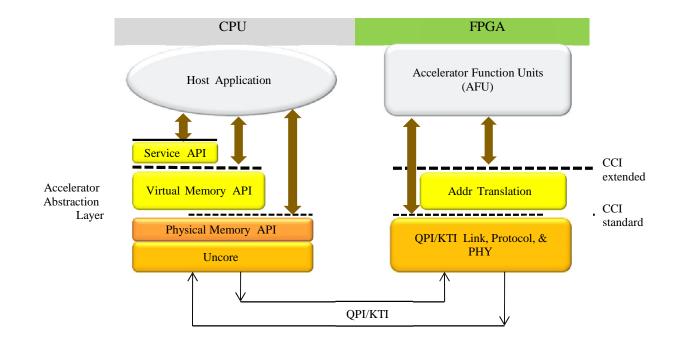

Description	Romley - OME 3.1	Grantley - OME 5.0
CPU	IVT	HSX, BDX
Platform Name	Grizzly Pass	Wild Cat Pass
Coherent	One QPI @ 6.4GTs	One QPI @ 6.4GTs (Target 8.0GTs)
Interconnect		
DDR Interface	2 channels of 72-bit wide DDR3. Each channel with 2 Dual Rank RDIMMs, 16GB each. DDR3 clock speed == 400 MHz	2 channels of 72-bit wide DDR4. Each channel with 2 Dual Rank RDIMMs, 16GB each. DDR4 clock speed == 800 MHz
PCIe connections to FPGA	N/A	One PCIe x8 End Point on the left edge of the FPGA along with QPI
HSSI ports	One PCIe x8 Gen 3 Root Complex on the right edge going to a PCIe slot on the platform	Two PCIe x8 Gen 3 Root Complex ports on the right edge going to PCIe slots on the platform
HSSI connectors	One High Speed connector on the OME3 module with 8 transceivers	Two High speed connectors on the OME5 module with 8 transceivers each.

Intel QPI Reference RTL

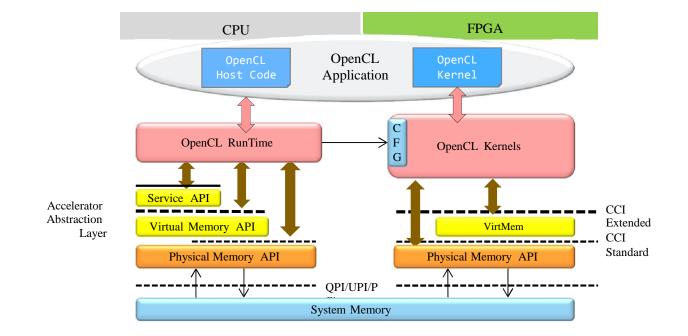

- PHY Implements the QPI PHY 1.1 (Analog/Digital)
- QPI Link/Protocol Combined unit that implements QPI Link/Protocol functionality for Cache Agent + Home Agent
- Core-Cache Interface (CCI) Implements the Core request functionality, manages Cache/Tag/Coherency interactions.
- Cache Data Holds cache data
- Cache Tag Tracks state of cached cacheline (MESI + internal states)
- Snoop Tag Tracks state of cacheline fetched by other agents
- Coherency/Snoop Table Programmable table that allows for easy modification of coherency protocol/rules
- System Protocol Layer Implements DMA/Address translation functionality for Accelerator developers (Not part of Reference RTL code)
- AFU Accelerator Function Unit implements acceleration logic. For Accelerator developers only. (Not part of Reference RTL code)
- CA QPI Caching Agent
- HA QPI Home Agent
- $\ensuremath{\mathsf{QLP}}\xspace \ensuremath{\mathsf{FPGA}}\xspace$ implementation of $\ensuremath{\mathsf{QPI}}\xspace$ Link & Protocol Layer
- QPH FPGA implementation of QPI Physical Layer
- MQ Memory queue
- MC Memory Controller

Pactron is QPI Licenses Provider

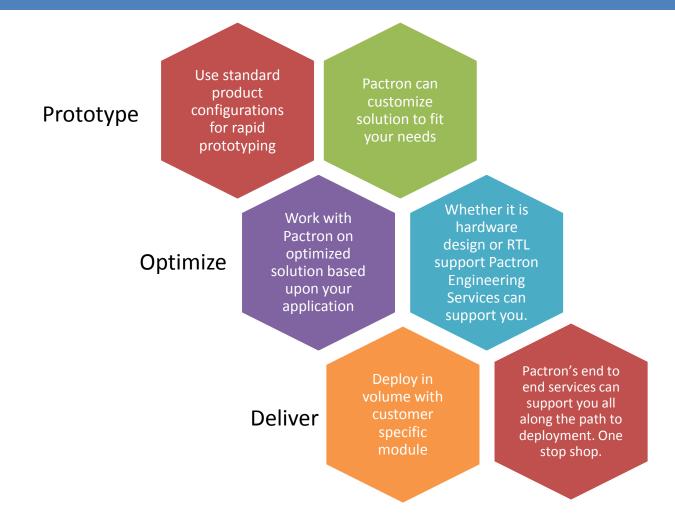
Intel QPI 1.1 Reference RTL Micro-Architecture



AFU Simulation Environment (ASE)


- Reduces hardware/software design cycle
- Allows end users to develop/test AFU RTL and software application in a single environment
 - Seamless portability from ASE development environment to Intel QuickAssist QPI-FPGA platform

Programming Interfaces: QuickAssist


Programming interfaces will be forward compatible from SDP to future MCP solutions Simulation Environment available for development of SW and RTL

Programming Interfaces ~ OpenCL

Unified application code abstracted from the hardware environment Portable across generations and families of CPUs and FPGAs

Pactron Integration Path

Pactron QPI Solutions Summary

- Intel[®] QPI Stack running on the Altera FPGA's
- Coherently attached to the shared memory space
- Cache inside the FPGA.....this is a big deal!
- Caching Agent and HA only with on-chip RAM
- Additional innovations are possible by merely reprogramming the Bitstream!
- Work with Pactron to deliver a customized solution to fit your Application needs